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Abstract The genus Monascus, comprising nine species,

can reproduce either vegetatively with filaments and con-

idia or sexually by the formation of ascospores. The most

well-known species of genus Monascus, namely, M. pur-

pureus, M. ruber and M. pilosus, are often used for rice

fermentation to produce red yeast rice, a special product

used either for food coloring or as a food supplement with

positive effects on human health. The colored appearance

(red, orange or yellow) of Monascus-fermented substrates

is produced by a mixture of oligoketide pigments that are

synthesized by a combination of polyketide and fatty acid

synthases. The major pigments consist of pairs of yellow

(ankaflavin and monascin), orange (rubropunctatin and

monascorubrin) and red (rubropunctamine and monasco-

rubramine) compounds; however, more than 20 other col-

ored products have recently been isolated from fermented

rice or culture media. In addition to pigments, a group of

monacolin substances and the mycotoxin citrinin can be

produced by Monascus. Various non-specific biological

activities (antimicrobial, antitumor, immunomodulative

and others) of these pigmented compounds are, at least

partly, ascribed to their reaction with amino group-con-

taining compounds, i.e. amino acids, proteins or nucleic

acids. Monacolins, in the form of b-hydroxy acids, inhibit

hydroxymethylglutaryl-coenzyme A reductase, a key

enzyme in cholesterol biosynthesis in animals and humans.
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Introduction

In Asian countries (China, Japan, Thailand, Indonesia, Tai-

wan, Philippines), filamentous fungi of the genus Monascus

have been used for centuries for the production of food

components, natural pigments and food supplements with

positive effects on human health. The most famous product is

Monascus-fermented rice, also known under a variety of

other names, including red rice, red yeast rice, ang-kak, anka,

ankak, angkhak, angquac and beni-koji [67].

A particular fungal species, under given conditions, can

produce a variety of secondary metabolites (pigments,

citrinin, monacolin K and others) that are usually charac-

terized by a polyketide structure and biological activity. At

the present time, research in this field is mainly focused on

the isolation and characterization of new secondary

metabolites [1, 10, 17, 26–28, 30, 63, 72, 82, 86, 89], as

well as on the determination of their biological activities

[1, 27, 35, 41, 63]. The main aim of this review is to collate

available knowledge on Monascus secondary metabolites,

with emphasis on their production and the spectra of their

biological activities.

The fungus Monascus

The genus Monascus belongs to the phylum Eumycota,

subphylum Ascomycotina, class Plectomycetes, order

Eurotiales, family Monascaceae and currently comprises

nine species, i.e. M. floridanus, M. pallens, M. pilosus,

M. purpureus, M. ruber, M. sanguineus, M. eremophilus,

M. lunisporas and M. argentinensis, for which there are a

number of synonyms [77]. Most Monascus species are

homothallic, teleomorphic fungi; an anamorph of the genus

Monascus is Bazipetospora.
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Asexual reproduction of this fungus is by the germina-

tion of conidia and formation of filaments that branch and

form mycelia. The most common types of conidia are

aleuroconidia that develop in conidiophores and occur

either as single cells or in chains. Chlamydioconidia or

arthroconidia are also formed, but only rarely. Sexual

reproduction begins with anastomosis of the male anther-

idium with the trichogyne and female ascogonium and

continues with migration of the male nuclei from the

antheridium to the ascogonium. Male and female nuclei do

not fuse, but the ascogonium enlarges and is encompassed

by sterile hyphae that form a protective shield. Ascogenous

hyphae inside the ascogonium are divided into cells, and

each of these cells contains male and female nuclei; this is

the beginning of asci formation. The nuclei only fuse in

asci, and nuclear fusion is followed by meiosis and mitosis,

resulting in eight haploidic daughter nuclei. These nuclei

form the basis of eight ascospores located in the asci. The

asci are associated into cleistothecia of varying sizes,

which are the true and frequently observed fruiting bodies.

Thus, Monascus has an ascohymenial development of

fruiting bodies during which fruiting body formation

occurs at the site of ascogonium fertilization. The devel-

opment of fruiting bodies occurs simultaneously with the

growth of ascogennous hyphae, and asci are formed in

primary cavities of the developing fruiting body. The ascus

wall is transparent, and after reaching maturity, it dissolves

and ascospores are released into the cleistothecium. After

rupture of the cleistothecium wall, ascospores are released

to the environment [11, 69, 84].

The formation of conidia and biomass growth are

stimulated by the presence of organic nitrogen sources in

the medium, especially amino acids, although amino acids

do suppress sexual reproduction. Nitrates stimulate both

ascospore and conidia formation, whereas ammonium ions

suppress both types of spores [12]. Red and—to some

extent—blue light increase spore formation of M. purpu-

reus [59, 80]. A mutual relationship between mycelium

differentiation, sporogenesis and secondary metabolism is

well described for filamentous fungi of the Aspergillus

genus [9] but has not been thoroughly explored for the

genus Monascus.

The genus Monascus can be characterized as aerobic,

saprophytic, prototrophic, mesophilic (temperature opti-

mum 30–35 �C), weakly xerophilous (growth up to 0.85

water activity), with respiro-fermentative metabolism. It

can produce lytic enzymes enabling growth on a spectrum

of different substrates, including monosaccharides, disac-

charides, starch, pectin and, in the case of M. ruber, also

cellulose and ethanol [8]. Excess glucose in the culture

medium results in ethanol formation under aerobic condi-

tions and, therefore, this fungus can be classified as

Crabtree negative with limited respiration [14].

Production of secondary metabolites

Certain species and strains of the fungus Monascus can

produce pigments, lovastatin (monacolin K), citrinin,

dimerumic acid and c-amino butyric acid, usually in sta-

tionary growth phase.

Pigments and citrinin: structure and biosynthesis

The main pigments produced by Monascus sp., especially

M. purpureus, M. ruber and M. pilosus, are six compounds,

i.e. monascin and ankaflavin (yellow), rubropunctatin and

monascorubrin (orange) and rubropunctamine and monas-

corubramine (red). The structures of these compounds (see

Fig. 1), together with a probable biosynthesis of orange and

red pigments by a reaction with amino group-containing

compounds, are well documented [33, 46, 53]. The pigments

are both polyketides and azaphilones, i.e. they are compounds

with an oxygenated bicyclic nucleus and a quaternary center

Although the structures of the major pigments were

determined between 1950 and 1970 [13, 20, 22, 24, 37, 53],

their biosynthetic pathways have still not been described in

detail and remain relatively unknown. A probable biosyn-

thetic pathway for the orange pigment, monascorubrin, that

consists of a combination of polyketide and fatty acids was

confirmed by experiments with the addition of radioac-

tively labeled octanoic acid to the culture medium [23].

The generation of red pigments by the reaction of orange

pigments and amino group-containing compounds has been

verified repeatedly [33, 46, 53]; the addition of individual

amino acids into the culture medium resulted in differently

colored derivatives of rubropunctamine and monascorubr-

amine [31].

In addition to the six main pigments mentioned above,

minor pigments have also been isolated from different

Monascus species cultured under various conditions

(Table 1). These include xanthomonasin A [72], yellow II

pigment [89], monascopyridines A and B [82], monascu-

sones A and B [30], xanthomonasin B [1], compounds R3

and Y3 [10], monasfluor A and B [28], monafilones A, B, C

[26], monarubrin and rubropunctin [52], purpureosone

[17], monasnicotinates A, B, C, D [86], a new red pigment

[63] and monapurpyridine A [27]. Some of these minor

pigments have been found in pairs, having side chains

containing six or eight carbons, the same as the main

pigments. The most frequently occurring minor pigments

are xanthomonasins A and B (furanoisophtalides) [1, 62].

Some of these minor pigments might be intermediates or

degradation products of the main pigments, and a possible

relationship between monascusones A and B and the major

yellow pigment, monascin, has been proposed [30].

The production of the mycotoxin citrinin, also a

polyketide compound (see Fig. 2), was described in
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M. purpureus and M. ruber in 1995 [5]. However, it was

subsequently shown [15] that the M. ruber used in the

original study [5] was not classified properly and was in

fact M. purpureus because the pksCT gene for citrinin

polyketide synthase is only found in M. purpureus and

M. kaoliang (M. kaoliang is a synonym for M. purpureus)

and not in M. pilosus, M. ruber, M. floridanus, M. san-

guineus, M. barkeri or M. lunisporas. Nevertheless, citrinin

production in M. ruber was later demonstrated by other

authors [38, 43].

Most pigments and citrinin are aromatic polyketides,

and their biosynthesis consists of repeated Claisen con-

densations of acetyl-coenzyme A (CoA) and malonyl-CoA

units, catalyzed by polyketide synthase type I [74]. In

general, signal transfer from the environment to a fungal

cell is mediated by a G protein signaling pathway and plays

a key role in regulating the formation of fungal secondary

metabolites [91]. In Monascus, both citrinin and pigment

formation are controlled by the a-subunit of signal protein

G. If the Mga1 gene responsible for the a-subunit is

inactivated in M. ruber M7, then both citrinin and pigment

formation would be stimulated [43]. The key role of a

signaling pathway of G proteins and signal transfer

mediated by a cAMP-activated protein kinase A were

confirmed by the addition of cAMP to the culture medium.

A correlation between cAMP concentration, ranging from

0 to 10 mmol/l, and secondary metabolite (pigments,

citrinin and monacolin K) formation has been found [38].

Smaller concentrations of cAMP (0.5–2 mmol/l) stimu-

lated the production of the metabolites, but higher con-

centrations (10 mmol/l) inhibited their production [38].

The inhibition of secondary metabolite formation by

10 mM cAMP has also been confirmed in M. pilosus

IFO4520 and M. purpureus IFO4478 [61].

The circadian regulation of the expression of genes

coding for carotenoid pigments or conidia formation has

been described in Neurospora crassa [51, 75]. In Asper-

gillus nidulans [7, 70], phytochrome FphA responding to

red light (at a wavelength of approx. 600 nm) was found to

influence the formation of conidia, cleistothecia and ste-

rigmatocystine. In M. purpureus, pigment formation was

observed to be stimulated under total darkness and was

completely inhibited under full light [3, 80]. In another

experiment, the synthesis of pigments and citrinin by

M. pilosus and M. purpureus was stimulated by red light

and repressed by blue light [59].
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Table 1 Selected minor Monascus polyketide pigments

Structure and name Production strain and conditions Reference

CHOO H

O

O
O

O H

O

xanthomonasin A (Y)

M. pilosus grown on rice [1, 72]

CHOOH

O

O
O

OH

O

xanthomonasin B (Y)

M. pilosus grown on rice [1]

O

O

O

O

N

monascopyridine A

M. purpureus grown on rice [35, 82]

O

O

O

O

N

monascopyridine B

M. purpureus grown on rice [35, 82]

O

O

OH
N

monascopyridine C

M. purpureus grown on rice [35]
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Table 1 continued

Structure and name Production strain and conditions Reference

OH

O

N

O

monascopyridine D

M. purpureus grown on rice [35]

O

OH

O

O

monaphilone A (Y)

Mutant of M. purpureus grown on rice [26]

O

O

O

OH

monaphilone B (Y)

Mutant of M. purpureus grown on rice [26]

OH

O
OH

O

O H

monascusone A (Y)

M. kaoliang mutant grown on rice [30]

O

O

O

O

O

monascusone B (Y)

M. kaoliang mutant grown on rice [30]
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Table 1 continued

Structure and name Production strain and conditions Reference

O

O

O

O

O

purpureusone (Y)

M. purpureus mutant grown on rice [17]

OH

O

O

O

monashexenone (Y)

Mutant of M.purpureus grown on rice [26]

O O

O

OH

monarubrin (Y, BF)

M. ruber culture medium [52]

O
OH

O

O

rubropunctin (Y, BF)

M. ruber culture medium [52]

OH
O

O

NH

O

O H

new red pigment

M. purpureus culture medium [59]

174 J Ind Microbiol Biotechnol (2013) 40:169–181

123



Lovastatin (monacolin K)—structure and biosynthesis

Mevastatin was the first of a group of statins isolated in the

1970s from Penicillium citrinum medium. Structural ana-

logs of mevastatin, i.e. monacolins J, K and L (Fig. 3),

were subsequently described as secondary metabolites of

Monascus ruber and Aspergillus terreus [19]. A gene

cluster for lovastatin synthesis was characterized in

M. pilosus, and this cluster was partly homologous with

that of A. terreus [16]. The biosynthesis of lovastatin

proceeds in a similar way in A. terreus and M. ruber and

requires the action of two polyketide synthases, i.e.

lovastatin nonaketide synthase and lovastatin diketide

synthase, with the former synthesizing dihydromonacolin

L, monacolin L and monacolin J in this order and the latter

providing the methylbutyryl-side chain [54].

Lovastatin is a typical secondary metabolite that is

produced in the stationary growth phase, and its production

is subject to glucose repression. M. pilosus was induced to

produce lovastatin (725 mg/l) in liquid medium using a

mixed substrate of maltose:glycerol (1:7) and peptone as

the nitrogen source [60]. With solid substrate cultivation

(SSC), an increase in lovastatin formation was induced by

adding glycerol, soya meal, acetic acid or NaNO3 to the

Table 1 continued

Structure and name Production strain and conditions Reference

O
O

O

O

O

monasfluor A (BF)

Monascus sp. grown on rice [28]

O
O

O

O

O

monasfluor B (BF)

Monascus sp. grown on rice [28]

O

O

O

O OH

O

compound R3 (R)

M. purpureus culture medium [10]

OH

OH

S OH

OH

OH

O

OH

compound Y3 (Y)

M. purpureus culture medium [10]

BF, R, Y: color of the compounds, i.e. blue fluorescent, red and yellow, respectively
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main substrate, rice [88]. Nevertheless, A. terreus strains

are usually used in industrial lovastatin production process

and the lovastation titer can reach 7–8 g/l [76].

Culture conditions versus secondary metabolite

formation

Solid substrate cultivation

The most famous Monascus product, red yeast rice, can be

used as a food coloring (red koji) or as a food supplement,

and its cultivation differs according to the intended

utilization [67]. A common problem with all red yeast rice

cultures is the possible formation of the mycotoxin citrinin,

but this can be overcome by selecting a citrinin non-pro-

ducing strain or by genetic modification of the producing

strain [29]. The amount of citrinin in red yeast rice can be

also decreased by its extraction with 45 % (v/v) ethanol

containing 1.5 % (w/v) phosphate. In one study where this

method was applied 92 % of the original citrinin was

removed and 80 % of the original monacolin K was pre-

served [40].

A traditional red yeast rice product for coloring foods

such as prepared fish, cheeses, soya products, vinegar,

Peking duck or sausages consists of washing, soaking,

draining and steaming of a convenient non-glutinous rice

variety, followed by inoculation with the fungus, a 7-day

culture in a heated room and drying at 45 or 60 �C. During

the cultivation, rice kernels are mixed or shaken and

moistened if necessary. A critical parameter for red koji

cultivation is the water activity (aw) of the substrate. High

aw results in elevated activity of the fungal glucoamylase,

which causes a rapid release of glucose from rice starch

and ethanol fermentation of the substrate instead of pig-

ment formation. In contrast, low aw results in poor fungal

O

OH

O O H

O

Fig. 2 Structure of the mycotoxin, citrinin
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growth. It is also important to ensure sufficient oxygen

access to the kernels and an outlet for CO2 and metabolic

heat by periodic mixing [33, 50]. Nowadays, different

types of bioreactors, such as cupboards with trays, rolling

drums or fluid beds are used for the production of red yeast

rice [18].

In the production of red koji, the culture time is shorter,

and the growth of fungal biomass together with the syn-

thesis of hydrolytic enzymes are emphasized. Red koji is

usually mixed with normal white koji that is obtained with

the culture of Aspergillus oryzae on rice fermented to

produce sake (which can be further distilled to obtain

Kaoliang brandy) or for tofu fermentation into sufu (soya

mold fermented cheese) [67].

Red yeast rice food supplements are based on statin

compounds, such as monacolin K. The formation of

monacolin K by Monascus can be stimulated by a sub-

optimal culture temperature and the addition of either

0.3 % ethanol [81] or NaNO3 [79].

In addition to rice, Monascus has been grown on jack-

fruit (Artocarpus heterophyllus) seeds [2], adlay (seeds of

Coix lacryma-jobi) [68], corn, breadfruit and tubers of

Discorea batatas [39]. Some of these substrates probably

positively affect consumers’ health, and after Monascus

cultivation they could be used as food supplements.

Submerged liquid cultivation

The main advantage of submerged liquid cultivation (SLC)

is the use of a defined culture medium, which permits

secondary metabolite formation to be controlled. Both

pigments and monacolin K are subject to strict glucose

repression [60], which results in ethanol production if the

glucose concentration in a medium exceeds 30 g/l [14].

The nitrogen source and the pH of the medium are critical

factors affecting pigment production. Organic nitrogen

sources, such as yeast extract or peptone, stimulate biomass

growth and conidia formation but suppress pigment pro-

duction. If they are used, free amino acids in the culture

medium, at neutral pH, can react with the orange pigments

monascorubrin and rubropunctatin to form red-colored

complexes of monascorubramine and rubropunctamine,

respectively [49]. A similar effect was found when

monosodium glutamate was used as the sole nitrogen

source [45]. However, in another study, the use of other

individual amino acids as sole nitrogen sources for growing

Monascus sp. cells resulted in worse pigment production in

comparison with monosodium glutamate [47]. Nitrates

limit growth but stimulate spore and pigment formation.

They cause an increase in pH, which stimulates the reac-

tion between orange pigments and amino group-containing

compounds, but the reaction is limited by the supply of

these amino compounds, the lack of which results in a gain

in yellow and orange pigments. Ammonium ions decrease

the pH of the culture medium and spore production is

inhibited, although pigment production is stimulated. A

low pH prevents the nucleophilic addition of amino groups

to the oxygen atoms of orange pigments and consequently

red pigment formation is limited [78]. The use of ammo-

nium nitrate as the nitrogen source has been found to result

in the formation of mainly cell-bound orange pigments by

Monascus sp. [48].

Ethanol, as a single substrate or co-substrate, can stim-

ulate both pigment and monacolin K formation [32, 81].

Since the production of secondary metabolites usually

takes place in the stationary growth phase, it may be pos-

sible to split fungal growth and secondary metabolite for-

mation into two distinct phases. Indeed, a two-stage

cultivation in which two substrates, maltose and ethanol,

were used successively [32] or two-stage cultivation con-

ducted at different pH (5.5 and 8.5) [65] resulted in

increased pigment production. Moreover, in the latter

study, high pH in the second stage caused the inhibition of

citrinin formation and the release of red pigments into the

culture medium.

Biological activity of secondary metabolites

The biological activity of the most famous Monascus

product, i.e. red yeast rice, has been known for centuries

[33, 57, 67].

Biological activity of Monascus pigments

The major Monascus pigments structurally belong to a

large group of fungal pigments known as azaphilones,

which usually exhibit biological activity manifested by the

inhibition of different enzyme activities, leading to anti-

microbial, anti-human immunodeficiency virus, antitumor,

antioxidant, anti-inflammatory or other characteristic

activities. This non-selective effect of azaphilones is

caused by their reaction with amino group-containing

compounds, i.e. amino acids, proteins or nucleic acids. This

reaction, in which the oxygen atom in the pyrane ring is

exchanged for nitrogen, results in the creation of vinylo-

gous c-pyridones [33, 57, 66]. In total, there are more than

170 known azaphilones, formed by 23 fungal genera, and

most of these exhibit biological activity [66].

The antimicrobial effect of rubropunctatin and mon-

ascorubrin on various microorganisms was first mentioned

by Wong and Bau [64] and Nozaki et al. [83] and con-

firmed by Martı́nková et al. [55, 56]. ‘‘New red pigment‘‘

[63] also suppresses the growth of Gram-positive bacteria.

Both orange (rubropunctatin and monascorubrin) and

yellow (ankaflavin and monascin) pigments have significant
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toxic and teratogenic effects on chicken embryos, but they

also have immunomodulative effects on mouse T-cells. In

contrast, red pigments, or their complexes with amino

group containing compounds, and extracts from red yeast

rice have neither of these effects [55, 56]. No negative

effects of red rice on human health have been described [6,

36, 90]. Nevertheless, cytotoxic effects of pure rubro-

punctamine, monascorubramine and monascopyridines

A and B on immortalized human kidney cells have been

reported [35]. Antitumor activity has been reported for

yellow, orange and red pigments together with monascu-

mic acids isolated from M. pilosus red yeast rice [1], mo-

napurpyridine A [27] and orange pigments [92].

The yellow pigments ankaflavin and monascin were

recently found to exhibit similar anticholesterolemic

effects as monacolin K [41].

Biological activity of citrinin

The discovery of citrinin production by Monascus [5]

resulted in the cessation of efforts to use Monascus pigments

as food colorants in Europe and the USA. In Asian countries,

where the coloring of foods with red yeast rice is traditional,

this discovery led to a thorough monitoring of citrinin levels

in red yeast rice and the establishment of maximum tolerance

limits for citrinin in food. This limit varies in different

countries and is 50 lg/kg in South Korea [34] and 200 lg/kg

in Japan [21]; the EU recommends 100 lg/kg.

Citrinin is hepatotoxic and nephrotoxic in various ani-

mals and humans and is also a probable cause of endemic

Balkan nephropathy. In the Ames test for mutagenicity,

citrinin exhibited no mutagenic effect, but the pre-culti-

vation of citrinin with hepatocytes resulted in the formation

of a mutagenic citrinin-derived product [71]. Citrinin also

possesses antimicrobial activity against Gram-positive and

Gram-negative bacteria [58, 85].

Biological activity of lovastatin (monacolin K) and red

rice

In 1987, lovastatin became the first drug isolated from a

group of statins with anticholesterolemic effects that was

approved by the U.S. Food and Drug Administration

(FDA). In general, statins are competitive inhibitors of

hydroxymethylglutaryl-coenzyme A (HMG-CoA) reduc-

tase, a key enzyme in cholesterol biosynthesis, due to a

structural analogy between the b-hydroxy acids of statins

and an HMG-CoA intermediate. The affinity of a statin

towards HMG-CoA reductase is several fold higher than

that of the HMG-CoA intermediate. The hypocholestero-

lemic effect of statins, i.e. a decrease in total blood cho-

lesterol concentration, is significant several days after the

beginning of treatment [54].

In addition to their confirmed anticholesterolemic effect,

statins have other positive influences on human health,

such as anti-inflammatory activity, improvement in the

state of the blood vessels, decreased risk of thrombosis and

accelerated healing of fractures. Recent research [76] has

also shown a decreased risk of Alzheimer’s disease and

cancerostatic effects. Negative effects on human health

(especially muscle myopathy and kidney disease) are not

frequent and are usually reversible [54].

Nowadays, approved statin drugs and food supplements

containing varying amounts of different statins are avail-

able based on a powder or an extract from red yeast rice

[67], either as a sole component or in a mixture with other

ingredients. The use of red yeast rice as a food supplement

has a demonstrable effect on human health, frequently

comparable with that of higher doses of statin drugs [6, 25,

50]. The healing effect of red rice is ascribed to the syn-

ergistic action of various components of red yeast rice, i.e.

different statins, gamma-aminobutyric acid (GABA), pig-

ments and b-sitosterol. The treatment of cardiovascular

diseases with red rice was described in the sixteenth cen-

tury in the Chinese Pharmacopoeia published (Shi-Zhen Li

(1518-1593) [50]). In the USA, some physicians recom-

mend the use of red yeast rice to patients with statin

intolerance [4]. A review summarizing the effect of red

yeast rice on Alzheimer’s disease has recently been pub-

lished [42], as has a study showing a reduction in an

abdominal aortal aneurysm [87]. The main problem asso-

ciated with use of red yeast rice is a lack of control during

and after the culture process because Good Manufacturing

Practice is not required in the production of food supple-

ments. This can result in possible citrinin contamination

and also varying concentrations of different statins [44]. As

a result, in 2007 the FDA warned consumers not to use red

yeast rice because it might contain varying amounts of

lovastatin, which could damage human health if taken

without medical supervision.

Monascus ruber is frequently isolated from silage,

where it can produce lovastatin and similar compounds that

can act as inhibitors of ergosterol synthesis in ruminal

cellulolytic fungi such as Neocallimastix. As a result of this

inhibition, the growth and metabolic activity of these fungi

is restricted, leading to poor fiber digestion by cattle [73].
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23. Hajajj H, Klaébé A, Goma G, Blanc PJ, Barbier E, François J

(2000) Medium-chain fatty acids affect citrinin production in the

filamentous fungus Monascus ruber. Appl Environ Microbiol

66:1120–1125

24. Haws EJ, Holker JSE, Kelly A, Powell ADG, Robertson A (1959)

The chemistry of fungi. Part XXXVII. The structure of rubro-

punctatin. J Chem Soc (Resumed) 1959:3598–3610

25. Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Go VL

(1999) Cholesterol-lowering effects of a proprietary Chinese red-

yeast-rice supplements. Am J Clin Nutr 69:231–236

26. Hsu Y-W, Hsu L-C, Liang Y-H, Kuo Y-H, Pan T-M (2010)

Monaphilones A-C, three new antiproliferative azaphilone

derivatives from Monascus purpureus NTU 568. J Agric Food

Chem 58:8211–8216

27. Hsu L-C, Hsu Y-W, Liang Y-H, Liaw C–C, Kuo Y-H, Pan T-M

(2012) Induction of apoptosis in human breast adenocarcinoma

cells MCF-7 by monapurpyridine A, a new azaphilone derivative

from Monascus purpureus NTU 568. Molecules 17:664–673

28. Huang Z, Xu Y, Li L, Yanping L (2008) Two new Monascus
metabolites with strong blue fluorescence isolated from red yeast

rice. J Agric Food Chem 56:112–118

29. Jia XQ, Xu ZN, Zhou LP, Sung CK (2010) Elimination of the

mycotoxin citrinin in the industrial important strain Monascus
purpureus SM001. Metabolic Eng 12:1–7

30. Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R,

Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004)

Azaphilone pigments from a yellow mutant of the fungus Mon-
ascus kaoliang. Phytochemistry 65:2569–2575

31. Jung H, Kim C, Kim K, Shin CS (2003) Color characteristics of

Monascus pigments derived by fermentation with various amino

acids. J Agric Food Chem 51:1302–1306
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